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Abstract 
This paper presents a physics-based real-time animation system for human-like 
articulated figures. We introduce a novel method for tracking motion data using 
dynamic simulation. By tracing a desired motion that is kinematically specified 
by a user using dynamic simulation, our system produces a motion that 
dynamically and realistically responds to a changing environment ensuring both 
controllability and physical realism. A tracking controller uses a human strength 
model as primary constraints, and controls joint angular acceleration within the 
available range of torque using inverse dynamics. As secondary constraints, the 
spatial accelerations of the center of mass and end-effectors are controlled. 
Unlike existing dynamic controllers that control joint torque for each 
degree-of-freedom (DOF) separately, our dynamic controller controls joint 
angular acceleration considering the influence of all DOFs using a 
pseudo-inverse matrix technique. In addition, this paper proposes two 
extensions of the Newton-Euler inverse dynamics method. One is a proximate 
solution for handling the closed loop problem. The other is for computing a 
minimum-moment point between the supporting segment of a figure and the 
ground for simulating falling motions. We demonstrate the efficacy of our 
approach by applying our method to a simple lifting task and generating various 
motions in response to the weight of the lifted load. 

 

1 Introduction 
Generating realistic human animation is a difficult challenge. Currently the most 
efficient and practical method is motion capture. Because the motion data are 
obtained from the movements of the real actors through the use of motion capture 
devices, this technique provides very rich details and a high degree of physical 
correctness. Recently, a number of techniques to reuse captured motion data have 
been proposed [10][17][6][5][29]. These techniques make it possible to retarget 
captured motion sequences on another character that has a different skeleton or 
apply them to another situation that has additional constraints. However, these 
methods use only kinematic constraints and do not include any notion of dynamics. 
Therefore these methods do not guarantee physical realism and cannot handle 
motions that dynamically and realistically respond to a changing environment (e.g. 
carrying a heavy load, colliding with other, balancing or falling down). However, 
generating such a motion is currently the most important issue for real-time 
applications such as electric game, virtual studio, and collaborative environments in 
which virtual humans move around and interact with the environments and each 
other. 

This paper presents a physics-based real-time animation system for human-like 
articulated figures. We introduce a new method for tracking motion data using 
dynamic simulation. Our system takes a kinematic motion sequence as an input. 
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Based on the desired motion sequences, a tracking controller controls the joints of a 
figure considering with the muscle strength of the human body, balance control, and 
spatial constrains of the motion. By tracking a kinematically specified motion using 
dynamic simulation, our system produces various motions that dynamically and 
realistically respond to a changing environment, ensuring both controllability and 
physical realism. A desired motion consists of angular trajectories for each 
degree-of-freedom (DOF) and optional constraints. A user of our system creates 
these motion sequences using existing kinematic methods such as motion capture, 
keyframe interpolation, inverse kinematics, motion synthesis, and transformation 
techniques.  

There are many systems for generating human animations using dynamic 
simulation [12][16][24][4]. These methods control joint torques for each DOF and 
use forward dynamics for computing joint angular accelerations based on the joint 
torques. On the other hand, our method controls joint angular accelerations for all 
DOFs directly and uses inverse dynamics for analyzing the torques required to 
realize the angular accelerations. By controlling angular accelerations in order to 
track a desired motion and modifying the angular accelerations to satisfy the 
multiple constraints, our method generates dynamically changing motions ensuring 
controllability. 

In this paper, we present a tracking algorithm for controlling joint angular 
accelerations considering multiple constraints by using a pseudo-inverse matrix 
technique. The tracking controller uses a human strength model as the primary 
constraints and controls the joint angular accelerations within the available torque 
range that is achieved by the muscle strength. As secondary constraints, the spatial 
accelerations of the center of mass and end-effectors are controlled. Unlike existing 
dynamic controllers that determine joint torque for each DOF separately, our 
dynamic controller determines joint angular accelerations considering the influences 
of each DOF on the torque of other DOFs. 

This paper also presents two extensions of the Newton-Euler method, which is 
one of the inverse dynamics methods. We introduce an approximate solution to 
handle a closed loop structure in a multiple support phase of human-like articulated 
figures. We also extend the Newton-Euler method with additional computations to 
determine a minimum-moment point on the surface between the supporting segment 
(e.g. foot) and the ground, and compute the rotational acceleration around the point 
for simulating falling over motions. 

The remainder of this paper is organized as follows. The next section describes 
how this work relates to other research efforts. Section 3 explains our dynamic 
simulation system and data representations. Section 4 presents the extensions of the 
Newton-Euler method. Section 5 introduces the tracking control algorithm. In 
section 6, an experimental result is demonstrated and discussed. 
 

2 Related Work 
There are two main approaches for generating motions with dynamics: spacetime 
constraints and dynamic simulation. In the spacetime constraints approach [28][7], 
an optimal motion trajectory is automatically determined from specified spacetime 
constraints to minimize an objective function. Rose et al. [25] adapted this approach 
to articulated figures and proposed a keyframe interpolation technique between 
specified postures minimizing the required torque which is calculated using an 
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inverse dynamics during the motion segments. Komura et al.[15] introduced a 
muscle model and used an objective function to minimize muscle force instead of 
joint torque. These methods are effective for generating keyframe animations. 
However, these methods cannot utilize existing motion data. Recently, Popović and 
Witkin [23] proposed a transformation technique which included the spacetime 
constraints approach and notions of dynamics. They extract the essence of physical 
properties from an original motion for the simplified model using the spacetime 
constraints approach. Then, they modify the extracted dynamic properties and 
reconstruct the resulting motion for the original articulated figure model. This 
method can easily modify the dynamic properties of existing motion data. However, 
this method does not reflect the character's skeleton and strength. Although the 
spacetime constraints approach ensures both controllability and physical realism, 
because solving an optimal problem requires an off-line process, it cannot produce 
motions interacting with environments in real-time. 

The dynamic simulation approach is used for animating figures as they interact 
dynamically with an environment. These methods use a dynamic controller to 
compute joint torques based on the current state and a desired motion. Forward 
dynamics simulation then generates the resulting motions based on the joint torques. 
Researchers have developed dynamic controllers that are specialized for a particular 
character’s skeleton and a behavior such as walking [4][16][24] and athletic 
movements [12]. These controllers use proportional-derivative (PD) servos to 
compute joint torque based on the desired and current angle for each DOF. The PD 
controller determines the output torque in proportion to the difference between the 
desired state dd θθ �,  and the current state θθ �,  (vector of angles and angular 
velocities, respectively). 

( ) ( )θθθθτ �� −+−= dvdp kk . (1) 

The PD controller is easy to implement. However, it assumes nothing about the 
dynamic characteristics of the system. Therefore, to produce stable and natural 
looking motions, proportional gains kp and kv need to be tuned for both a character 
and a motion through trial and error. Once the controllers have been fine tuned and 
synchronized to each other, the method can produce expressive and physically 
correct motions. However, although an algorithm that transforms a successful 
controller on another character has been reported [11], it is still difficult to construct 
a controller that works successfully. 

Recently, more advanced controllers have been proposed for tracking a 
kinematicaly specified motion using an approach similar to ours. Zordan and 
Hodgins [30] proposed a dynamic controller for general motions of the human 
upper-body. They combine the PD controller and optimal control. Their system 
determines optimal parameters kp and kv to minimize the error between the desired 
and produced motion sequences. However, because determining the parameter 
requires off-line process, this method is not suitable for real-time applications. 
Kokkevis et al. [14] used Model Reference Adaptive Control (MRAC) instead of the 
PD control scheme. They reported that the MRAC, based on feedback control, 
controls DOFs successfully and relieves the user from having to set explicit 
parameters. These controllers compute the torque for each DOF separately, not 
considering the influences of joint torque on another joint’s angular acceleration. 
Therefore it seems to be difficult to adopt these controllers to the full-body motion 
that includes the movement of the center of mass (e.g. walking and running) or 
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needs the assistance of other DOFs for controlling some DOFs (e.g. lifting and 
swing). Unfortunately, these existing controllers have not yet been applied to such a 
motion. These methods based on forward dynamics are aimed at generating natural 
motions even if they take unnatural trajectories as an input. On the other hand, our 
method assumes that input motion is already realistic, and is aimed at generating 
natural and realistic motions when the original motion is difficult to realize due to 
locking muscle strength, external forces, a collision with others, etc. 

Some researchers have developed methods that modify an original motion using 
dynamic simulation. Ko and Badler[13] developed a system modifying human 
walking motion with balance and comfort control using inverse dynamics. Their 
system transforms the positions of the pelvis and torso, and the walking speeds in 
response to the joint torque calculated by inverse dynamics in real-time. However, 
the computation of the modification does not include dynamics and depends on 
parameters that are tuned by hand. Therefore the method cannot handle another 
motion or interactions with the environment. 
 

3 Dynamic Simulation System 
The structure of the animation system presented in this paper is shown in Fig. 1. The 
system consists of two main modules: dynamic controller and dynamic simulator. 
On each simulation step, the dynamic controller computes joint angular acceleration 
for all DOFs, based on a desired motion that is specified by a user. Then the 
dynamic simulator updates the state of figures using dynamic simulation.  

In standard physics-based animation systems[12][14][30], forward dynamics 
computes joint angular accelerations based on joint torques generated by a dynamic 
controller. However, in our system, the dynamic controller controls joint angular 
accelerations taking into account the required torques using inverse dynamics. Given 
the joint angular accelerations, the dynamic simulator computes the rotational 
acceleration of the supporting segment of the figure (e.g. foot) based on the joint 
angular accelerations (the details of this technique are described in section 4.2). The 
states of all figures then are updated by an integral computation. In addition, 
collision detection and response are performed. To handle collision, in the similar 
way of previous works[14][20], we introduce two stages: impact and contact stage. 
At the impact stage, when two figures collide with each other for the first time, an 
impact force works between them and changes their velocities. The variation of the 
velocities is computed by solving a liner equation [20][14]. At the contact stage, 
while the two figures contact with each other after the first impact, penetration 
avoidance works to prevent their penetration. In many physics-based systems, a 
spring-damper is used to avoid penetration. However, it requires both forward 
dynamics and a smaller time step for reducing error. Therefore we take another 
simple approach to control the angles directly using inverse kinematics. Inverse 
dynamics then compute reacting forces. The reacting forces are considered in the 
inverse dynamics of the next step of the simulation. If the figure want to remain in 
contact and the required torque is available, the two figures still contact. If the 
required torque is not available, they part. 
 

3.1 Human Body Model 

Our system uses a human body model consisting of segments and joints. Each rigid 
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segment is connected by a rotational joint. Each rotational joint has one, two, or 
three DOFs. Each DOF has two limits to restrict joint angles within human natural 
postures. In the experiments presented in this paper, we use a skeleton model 
composed of 18 segments and 17 joints with a total of 39 DOFs (Fig. 2). For 
dynamic simulation, the mass and moment of inertia of each segment are calculated 
based on the polygonal geometry [12]. The polygonal geometry of the human body 
also is used for collision detection and for determining a supporting point between 
its surface and the ground.  

The dynamic controller uses the available muscle strength of each DOF as 
constraints. We adopt a simple muscle strength model [13][18]. The two muscle 
strength functions, the values of maximum and minimum available torque, are used 
for each DOF. Pandya et al. [21] showed by collecting human strength data that 
these values are expressed by functions of the joint angle and angular velocity. For 
the experiments, we assign approximated strength functions to each DOF. 
 

3.2 Motion Data Representation 

A desired motion is specified by both joint trajectories and optional constraints. The 
joint trajectories describe the joint angular displacements over time. These 
trajectories are used to control the figure’s joint angular acceleration in the dynamic 
controller. As optional constraints, spatially important segments or the center of 
mass can be indicated. For some behavior, the position and/or orientation of some 
segment or the center of mass are more important than individual joint angle. For 
examples, in picking-up motion, the goal position of the hand is more important than 
the joint angles along the arm. On the other hand, in walking motion, the horizontal 
position of the pelvis and the center of mass are important to balance the upper body. 
These constraints are indicated by a user for individual motion. The spatial or 
oriental trajectories are given by the user or automatically generated from the joint 
angular trajectories. The dynamic controller uses these trajectories as the secondary 
constraints. For a desired motion, motion capture data and any motion sequence 
created by other animation systems are used as an input to our system. To facilitate 
the use of existing motion sequences, motion synthesis [3][22][25] and editing 

Fig. 2: The human body model. Fig. 1: The structure of the animation system.
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[17][6][10][23] techniques are available. Our system relies on these previous works. 
Their detailed description is beyond the scope of this paper. 
 

4 Extensions of the Newton-Euler Method 
The dynamic controller uses inverse dynamics for tracking control. Given current 
joint angles and angular velocities, and desired angular accelerations, inverse 
dynamics computes the joint torques required to realize the angular accelerations. 
The inverse dynamics problem is well defined, and systematic and efficient methods 
exist for serial articulated structures. Of the two popular formulations 
(Newton-Euler and Lagrangian), we adopted the Newton-Euler method. It costs 
O(n) where n is the number of DOFs of the figure. The Newton-Euler method 
computes the torques through two stages: outward iteration and inward iteration. 
During the outward iteration, accelerations of each segment are propagated from the 
root to the end-effectors. Then, during the inward iteration, the joint torques are 
propagated from the end-effectors to the root. For details of this algorithm, we refer 
the reader to [8]. In the following discussion of this section, we assume that the 
reader is familiar with the Newton-Euler method. 
 

4.1 Closed-loop Problem in Multiple Supports 

Because the inverse dynamics methods are designed for 
serial structures, it cannot handle a closed loop structure 
in a multiple support phase of human-like articulated 
figures (e.g. Fig. 3). The difficulty of this problem comes 
from the indeterminacy of how much force and torque 
are distributed to each supporting segment. Ko and 
Badler [13] introduce an approximate solution for the 
double support phase during walking motion. They 
distribute the force and torque from the upper body to 
each leg in proportion to the relative distances between 
the projection of the center of mass and the ankles. 
However, their approximation does not consider the 
dynamics of motion. Although there are more general 
methods that treat a closed loop as a non-closed loop 
with distance constraints [19], the methods need to solve 
an optimization problem and are not suitable for 
real-time systems. Therefore, we extend the Ko and 
Badler method for general postures and introduce 
dynamics. 

When a number of segments make contact with the ground, we calculate the 
supporting ratio iα  for each segment i: 
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where ni is a normal vector of the ground or the contact plane, li is a vector from the 
contact point to the center of mass, and ma  is a vector of acceleration of the center 
of mass (Fig. 4). Equation (2) represents the inner product of ma and ni along the 
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direction of li. After determining the supporting ratio, we use the Newton-Euler 
method distributing the force and torque proportional to ma [13]. To perform the 
iterations, we chose one segment whose supporting ratio is the largest on a common 
path, while other segments on the path are neglected. Our solution has the advantage 
that it is easily computed and reflects the dynamics of the movement of the center of 
mass. For example, in Fig. 3, when the figure moves toward right side, the 
acceleration of the center of mass works on the right side, then the supporting ratio 
of the left hand becomes large. 
 

4.2 Computing Rotational Acceleration around the Minimum-moment Point 

In physics-based simulation systems for articulated figures, it is difficult to generate 
an animation in which a figure falls over. To simulate such a motion, we should 
determine the supporting point around where the figure rotates. For example, when a 
figure falls to right side, the supporting point exists on the right side of the right foot. 
When a figure falls toward the back side, the supporting point exists at the heel of 
the foot. The supporting point is the minimum-moment point (MMP) at which the 
moment applied from the supporting segment to the ground is minimum. However, 
it is difficult to determine where the MPP exists on the supporting surface. Most 
physics-based systems [12] use a fixed MMP (e.g. middle of sole). In addition, for 
stable control, they sometimes introduce constraints that do not allow a figure to fall 
down and perform a forward dynamics. Therefore they cannot simulate falling down 
motions except on in which the direction of the figures falls over is already known 
and the supporting points are given. Ko and Badler [13] approximate the position of 
the MMP during human walking by means of monotonically advancing function 
from the heel to the tip of the toe. Aydin and Nakajima [1] propose an approximate 
solution to compute the position of the MMP. However, their algorithm 
approximates the foot to a rectangle and does not consider rotation around the 
supporting point.  

We extend the Newton-Euler method to compute a MMP and rotational 
acceleration around the MMP. First, we consider only one main support segment. 
When a number of segments make contact with the ground, we chose one segment 
whose supporting ratio is the largest. Generally, when a figure maintains balance, 
there is a zero-moment point (ZMP) at which the moment applied from the support 
segment to the ground is zero [13]. Therefore, we are able to determine whether a 
rotation arises or not, by whether or not the ZMP exists on the supporting segment. 
To compute the position of the ZMP, we extent the Newton-Euler method and 
perform additional computations. Given joint angular accelerations, the 
Newton-Euler method computes joint torques, and the force and moment that is 
applied to the supporting segment from the previous joint (in Fig. 4, 1n  and 1f  
are the moment and the force, respectively). The moment 0n  applied from the 
supporting segment to the ground is  

gg flflnn ×+×+= 10110 . (3) 

On assumption that the surface of the ground is flat, the vector 01l  that makes 
0n  zero is computed and then the position of the ZMP is determined. At this time, if 

the ZMP exists inside of the supporting surface between the supporting segment and 
the ground, no rotation arises (Fig. 4 (a)). On the other hand, if the ZMP exists 
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outside of the surface, a rotation will arise around the MMP that is the closest point 
to the ZMP (Fig. 4(b)). To determine this condition, our system uses the geometry of 
the figure and contact information that is reported by the collision handler. The 
rotational acceleration around the MMP is calculated by 0n  and the moment of 
inertia of all of the segments. Then the rotation acceleration is applied except when 
other supporting segments prevent the rotation. For example, in Fig. 3, although the 
MMP exist on the left edge of the left foot, rotation is prevented by the left hand. 
Using our algorithm, given joint angular accelerations, the dynamic simulator 
computes a rotation around a supporting point and generates an animation such that 
a figure falls over. 
 

5 Motion Tracking Control 
The dynamic controller computes joint angular accelerations on each simulation step. 
This algorithm uses a pseudo-inverse matrix method that is a common technique for 
inverse kinematics[9]. First, initial angular accelerations are calculated for each 
DOF to track a desired motion. Then, the angular accelerations are modified in order 
to satisfy multiple constraints. As primary constraints, the angular accelerations are 
restricted to be achieved only by available muscle strength. As secondary constraints, 
the angular accelerations are modified to control the spatial accelerations of the 
center of mass and the end effectors. Secondary constraints are applied under the 
condition that they exert no influence on the primary constraints. The remainder of 
this section describes each step of the algorithm in detail. 
 

5.1 Determining Initial Angular Accelerations 

The initial angular accelerations initialθ��  are calculated from the differences between 
the current state currcurr θθ �,  (n dimensional vectors of joint angles and angular 
velocities for each DOF) and the next state desireddesired θθ �,  of the desired motion: 

vainitial θαθαθ ������ )1( −+=  (4) 

where aθ��  is an angular acceleration meant to achieve the desired angle desiredθ  on 
next step, vθ��  is one to achieve the desired angular velocity desiredθ� . These values 
are calculated for each DOF respectively using a differential equation that is used in 
the dynamic simulation. Since we cannot satisfy both values, we use a blend 
parameter α (currently, we use 2.0=α ). On this step, a proportional control is 

Fig. 4: Posture and forces applied to the supporting segment in (a) a balanced posture and
(b) a unbalanced posture. 
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used. However, unlike PD controllers, because all terms are computed in angular 
acceleration space, stabilization is ensured. If all following constraints are satisfied 
in initialθ�� , it is used directly as the output. 
 

5.2 Available Torque Constraints 

As the primary constraints, the dynamic controller uses the range of available torque 
of each DOF. The range of available torque (two vectors of maximum and minimum 
torques) is obtained from the muscle strength curves described in section 3.1 as: 

( )currcurrf θθτ �,1max = , ( )currcurrf θθτ �,2min = . (5) 

The torques to drive the initial accelerations are calculated by the inverse dynamics 
equation: 

( ) ( ) ( ) ( )FKGCH currcurrcurrcurrcurrinitial θθθθθθτ +++= ��� ,initial  (6) 

where ( )currH θ  represents the moment of inertia, and ( )currcurrC θθ �, , ( )currG θ , and 
( )FK currθ  represent the influence on the torques due to coriolis and centrifugal, 

gravity, and external force, respectively. 
If the joint torque of some DOF exceeds its available range, the joint angular 

accelerations of all DOFs are modified in order to reduce the torque of the DOFs. 
Let τ∆ ′  be a k dimension vector represents the variations of toques for k DOFs 
that exceed the available torque range. Comparing initialτ  with maxτ  and minτ , the 
variations of the joint torques τ∆ ′  are calculated: 

τ∆τ∆ 1S=′    
�
�
�

−
−

=
iinitiali

iinitiali
j

,min,

,max,

ττ
ττ

τ∆    
iiinitial

iiinitial

min,,

max,,

   if
   if

ττ
ττ

<
>

 (7) 

where 1S  is a selection matrix from n dimensional vector τ∆  to k dimensional 
vector τ∆ ′ , θ∆ ��  is the n dimensional vector that is the variation of the angular 
accelerations. The relation between τ∆ ′ (k dimension) and θ∆ ′�� (n dimension, 

kn ≥ ) is  

θ∆τ∆ ′′=′ ��H  (8) 

where H ′  is a nk ×  sub-matrix of the moment of inertia ( )currH θ . The matrix 
H ′  depends on only currθ , the current joint angles. The H ′  is computed by using 
the existing methods [26]. It costs O(n2) computational time. To solve the redundant 
linier system (8), a pseudo-inverse matrix is used: 

( )xHHIH ′′−+′′=′ ++ τ∆θ∆ ��  (9) 

( ) 1−+ ′′′=′ tt HHHH  (10) 

where +′H is the pseudo-inverse matrix of H ′  and x  is a optimization vector that 
is used in the secondary constraints. The first term in equation (9) is the least square 
solution that minimizes the normal of θ∆ �� . The second term is the homogeneous 
portion of the solution, partially performing a desired optimization x  under the 
exact achievement of the primary constraints. This is achieved with the projection to 
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the null space of the linear transformation. A more detailed discussions of the 
pseudo-inverse matrix method can be found in [9][3][6]. 

To modify the initial angular accelerations initialθ��  in order to satisfy the primary 
constraints, using the first term of equation (9), the first variation of angular 
accelerations 1θ∆ ��  are calculated.  

τ∆θ∆ ′′= +H1
��  (11) 

However, the equations (8), (9), (10) and (11) take into account only k DOFs whose 
torques exceed the available range. Therefore the modified angular accelerations 

1θ∆ ��  may exceed the available range of the torques besides k DOFs. When such 
excess is present, the exceeded DOFs are added to the group of k DOFs, 
then +′H and 1θ∆ ��  are recomputed. This step is repeated until the primary 
constraints are satisfied. Because the moment of inertia matrix is regular [26][8], the 
answer 1θ∆ ��  is consistently achieved. 
 

5.3 Spatial Constrains of the Center of Mass and End-Effectors 

To control the positions and orientations of end-effecters, inverse kinetimatics 
methods [9][6] are available. In addition, to control both them and the position of the 
center of the mass, we use an inverse kinetics method [3][1], witch employs a 
pseudo-inverse matrix technique. The inverse kinetics equation is 

( ) eJJJIgJx eggg ���� ∆∆ +++ ⋅−+=  (12) 

where g��∆  is the variation of the position of the center of mass, and e��∆  is 
composed of the variations of the position and/or orientation of the end-effectors. 
The dimensions of g��∆  and e��∆  are depend on the constraints specified by a user 
for individual motion. For example, when the horizontal position of the center of 
mass and the spatial position of both hands are indicated, the dimension of g∆  will 
be two and the dimension of e∆  will be six. gJ  is the Jacobian matrix that 
projects the variation of angles to the variation of the position of the center of mass. 
In addition, eJ  projects the variation of angles to the variation of the position 
and/or orientation of the end-effectors. 

θ���� ∆=∆ gJg     θ���� ∆=∆ eJe . (13) 

The desired variations of the position of the center of mass g��∆  and the variations 
of the position and/or orientation of the end-effectors e��∆  are determined calculated 
by the equation 

( )1θ∆θ ������ += initialginitial Jg     initialdesired ggg ������ −=∆  (14) 

( )1θ∆θ ������ += initialginitial Je     initialdesired eee ������ −=∆  (15) 

where initialg��  and initiale��  are the acceleration of the center of mass and the 
end-effectors, respectively, that are achieved by the joint angular accelerations 
which are modified by the primary constraints. desiredg��  and desirede��  are  the 
desired spatial accelerations that are determined by the desired motion. The second 
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variation of the angular accelerations 2θ∆ ��  is calculated as 

( )xHSHI 22
+′′−=θ∆ ��  (16) 

where 2S  is a mapping matrix that selects only l dimensional vector from xH  as 
in equation (7), and I  is the identity matrix. We note that l DOFs are selected 
independently of k DOFs used in the first modification. Then, as in equation (11), 
we repeat this computation until the torque of any DOF that is required to 2θ∆ ��  
does not exceed its available range. 
 

5.4 Determining Output Angular Accelerations 

Finally, the output joint angular accelerations outputθ��  are calculated by the equation 

21 θ∆θ∆θθ �������� ++= initialoutput . (17) 

The full description of (17) is also expressed as 

( ) ( ){ }eJJJIgJHSHISH eggginitialoutput �������� ∆∆τ∆θθ +++++ ⋅−+′′−+′+= 21 . (18) 

This algorithm controls angular accelerations in order to achieve a resulting motion 
that is close to the desired motion, while considering the influence of all DOFs, 
within the available torque ranges, in the similar fashion as do human beings. As a 
result, naturally and realistically changing motions are produced. 
 

6 Experiments and Discussion 
In this section, we show an experimental result generated by applying our method to 
a lifting task (Fig. 5, see Appendix). In the three animations, each figure tracks the 
same motion, while it has a different weight load (1kg, 3kg and 4kg, respectively) 
with its right hand. In this example, we used a keyframe motion sequence that is 
made by a hand as a desired motion. The lifting motion consists of the trajectories of 
all the DOFs and additional spatial constraints of the center of mass and the right 
hand. Our system works normally at 10fps on a PC (PentiumIII 600MHz Dual). The 
duration between steps of this simulation is 1/30 second.  

In the first animation (1kg), because the constraints are satisfied throughout the 
entire motion, the original motion is almost exactly tracked. In the second animation, 
because of the load’s relatively heavy weight (3kg), the torques at the DOFs along 
the right arm exceed the available ranges. In the tracking control, to reduce the stress 
of DOFs along the right arm, other DOFs (knee, back, etc) that have strongly 
influence the right arm are forced to move slightly maintaining its balance. As a 
result, resulting motion close to the original motion is produced, but with an 
attendant jerking motion. In the last example, because of the heavy load, the back of 
the figure is forced to bend, and it then lost its balance and falls down. By producing 
various motions in response to the stress on right arm, the efficacy of our methods is 
demonstrated. 

For this experiment, we used hand-tuned strength function. In our future research, 
we will plan to clarify the differences of motions produced under different skeletal 
and strength conditions (e.g. man, woman and child) using actual human strength 
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data. In addition, because measuring human strength is a difficult work, we intend to 
construct the strength modes from a set of captured motion data. 

The dynamic controller presented in this paper is intended only to trace a desired 
motion. However, in human movements, when it is very difficult to realize a desired 
motion, more sophisticated control schemes are sometimes used. For example, when 
a figure loses its balance, it does not only control the center of mass, but also 
attempts to maintain its balance by moving its foots. If a figure cannot lift a load 
using only one hand, it automatically uses its other hand. In the future, we are going 
to introduce such advanced behavior to the current low-level tracking controller.  
 

7 Conclusion 
In this paper, we present a physics-based animation system for articulated figures. A 
new control algorithm to track an original motion using dynamic simulation is 
introduced. The physics-based approach is not currently adopted in many real-time 
applications since physics-based systems are difficult to construct and control. 
However, on-line applications such as electric games or virtual environments have 
serious limitations in that they cannot generate figures whose motions dynamically 
change in response to an environment in real-time. We believe that our approach will 
break through these limitations. Even though a more sophisticated control scheme 
might be required, the dynamic simulation and tracking control techniques that we 
present in this paper will form a fundamental basis for further development in the 
area of real-time computer animation. 
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Simulated lifting up task. In each animation, the figure tracks the same lifting
motion while having a different weight load ((a)1kg, (b)3kg, and (c)5kg) (Oshita and 
Makinouchi, Fig. 5). 

(a) 

(b) 

(c) 


