コンピュータアニメーション特論

第5回 キーフレームアニメーション(2)

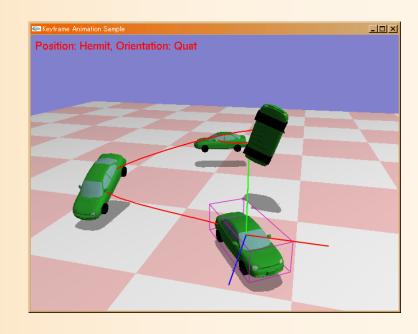
九州工業大学 情報工学研究院 尾下真樹

今日の内容

- ・向きの補間
 - 向きの表現方法と相互変換
 - オイラー角の線形補間
 - 四元数の球面線形補間
- ・アニメーションプログラミング
- ・レポート課題

キーフレームアニメーション

- 入力された複数のキーフレーム(時刻・状態の組)からアニメーションを生成
 - 少数のキーフレームの情報から、連続的なアニメーションを生成
 - 前後のキーフレームの 状態(位置・向き)を補間 して、キーフレーム間の 任意時刻の状態を生成
 - ・位置や向きの補間の計算 が必要となる



全体の内容

- キーフレームアニメーションの基礎
- ・サンプルプログラム
- ・行列・ベクトルを扱うプログラミング
- 位置補間
 - 線形補間、Hermite曲線、 Bézier曲線、B-Spline曲線
- ・向きの補間
 - 向きの表現と変換、オイラー角、四元数と球面線形補間
- ・アニメーションプログラミング
- ・レポート課題

今日の内容

- ・向きの補間
 - オイラー角
 - 四元数と球面線形補間
 - 相互変換
- ・アニメーションプログラミング
- ・レポート課題

参考書

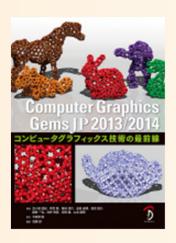
・「3DCGアニメーション」 栗原恒弥・安生健一 著、技術評論社、¥2,980

3次元図形机理

- アニメーション技術全般を解説
- · 3次元図形処理工学 黒瀬 能聿 著、共立出版、¥2,600
 - 曲線・曲面について詳しく説明
- vecmathを理解するための数学 平鍋 健児 著 (四元数の詳しい解説)
 - http://www.objectclub.jp/download/vecmath1

参考書 (続き)

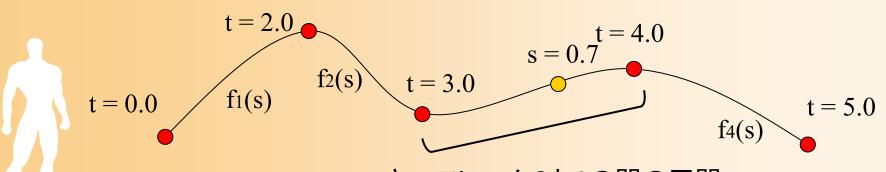
- Computer Graphics Gems JP 2013/2014 「パラメトリックポーズブレンド」
 - 回転の補間方法についての詳しい解説



補間の考え方(復習)

・補間関数

- 軌道全体を各キーフレーム間の区間に分ける
- 各区間の軌道を何らかの関数により表現
 - ・通常は、区間の前後の制御点をもとに、関数を決定
- 全体の時刻から、現在の区間内のローカル時間を計算 (例: s = 0.0 ~ 1.0 の範囲とする)



キーフレーム3と4の間の区間 の軌道を表す関数 f3(s)

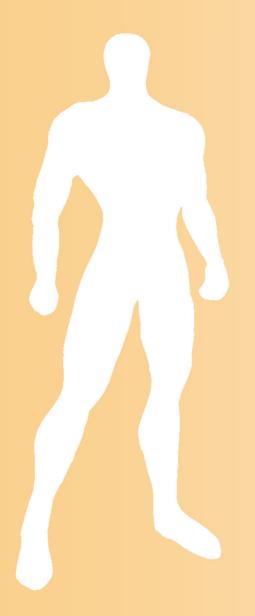
位置・向きの補間(復習)

・位置の補間方法

- 位置の表現方法
 - 位置ベクトルによる表現
- 位置の補間方法
 - ・線形補間、Hermite曲線、Bézier曲線、B-Spline曲線

・向きの補間方法

- 向きの表現方法
 - ・回転行列、オイラー角、回転軸と回転角度、四元数
- 向きの補間方法
 - ・オイラー角、四元数



向きの補間

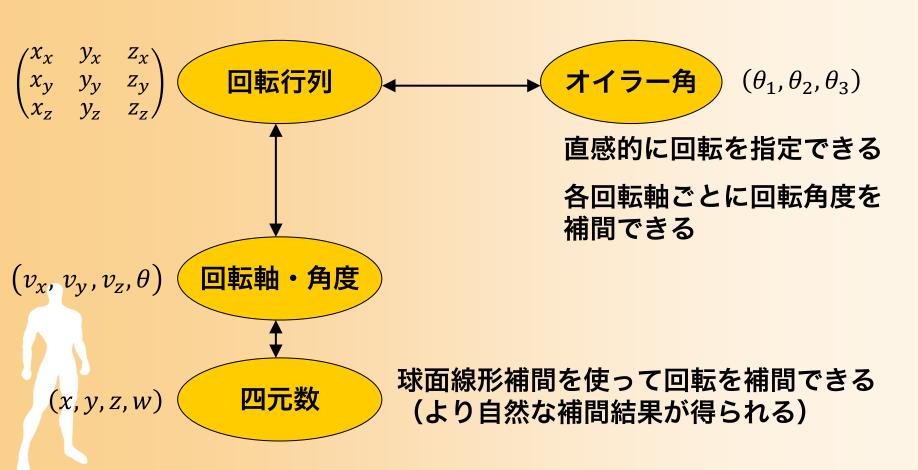
向きの表現と補間方法

・向きの表現方法

- 回転行列による表現 (3×3行列) (x_z y_y z_y z_z)
 - ・基本的な表現方法(OpenGL等に向きの情報を渡すときに は、回転行列で表現する必要がある)
 - ・余計なデータが多い、補間は難しい
- オイラー角による表現 $(\theta_1, \theta_2, \theta_3)$
 - ・各回転軸ごとに回転角度を補間できる
- 回転軸と回転角度による表現 (v_x, v_y, v_z, θ)
- 四元数による表現 (x, y, z, w)
 - ・球面線形補間を使って向きを全体的に補間できる

向きの表現方法と相互変換

・回転行列による表現方法が基本



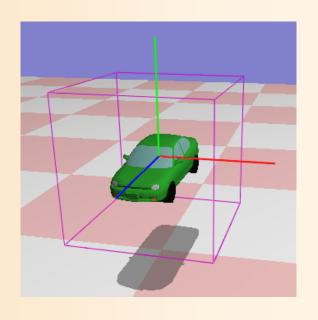
向きと回転の関係

- ・向きと回転の違いは何か?
- ・向きは回転によって表現できる
 - 初期状態からの回転により表現
 - 一つの向きを複数の回転により表せる
 - ・例:Y軸周りに90度回転、-270度回転、450度回転は、 全て同じ向きになる
 - ・表現を一通りにするためには、何らかの制約が必要
- 回転は向きでは表せない
 - 180度を超える回転は、向きでは表せない

回転行列による表現

- ・回転行列(3×3行列)による表現
 - 各列が、ワールド座標系における、モデル座標系の X軸・Y軸・Z軸の方向ベクトルを表す
 - 各列の長さは1で、互いに直交する必要がある
 - 向きが一意に決まる
 - ・一つの向きの表現方法は、
 - 一通りしかない

$$\mathbf{M} = \begin{pmatrix} x_{\chi} & y_{\chi} & z_{\chi} \\ x_{\chi} & y_{\chi} & z_{\chi} \\ x_{z} & y_{z} & z_{z} \end{pmatrix}$$



回転行列の補間

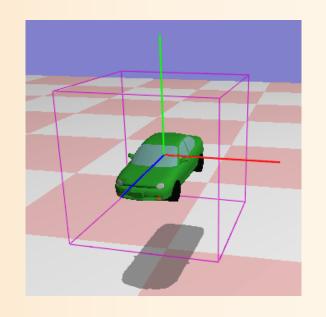
- そのまま補間することは難しい
 - 3×3行列の各要素を別々に補間すると、回転行列 の制約が満たされない
 - 各列の長さは1で、互いに直交する必要がある

$$\mathbf{M} = \begin{pmatrix} x_{\chi} & y_{\chi} & z_{\chi} \\ x_{y} & y_{y} & z_{y} \\ x_{z} & y_{z} & z_{z} \end{pmatrix}$$

参考:変換行列による向き+位置の表 現

- ・4×4行列(同次座標変換行列)を使うことで、 向きと位置を合わせて表現できる
 - 左上の 3×3成分 に、回転行列を設定
 - 右端の成分に、位置ベクトルを設定
 - モデル座標系から、ワールド 座標系への変換を表す

$$\mathbf{M} = \begin{pmatrix} R_{00} & R_{01} & R_{02} \\ R_{10} & R_{11} & R_{12} \\ R_{20} & R_{21} & R_{22} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} T_x \\ T_y \\ T_z \\ 0 \end{pmatrix}$$



オイラー角による表現

- · 各軸周りの回転角度(Θ)の組で向きを表現
 - 回転行列の積によって全体の向きを計算

$$\mathbf{M} = R_z (\theta_2) \cdot R_x (\theta_1) \cdot R_y (\theta_0)$$

$$= \begin{pmatrix} \cos \theta_2 & -\sin \theta_2 & 0 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_1 & -\sin \theta_1 \\ 0 & \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix} \cos \theta_0 & 0 & \sin \theta_0 \\ 0 & 1 & 0 \\ -\sin \theta_0 & 0 & \cos \theta_0 \end{pmatrix}$$

- ※ 回転行列の適用順序によって向きが変わる
 - 適切な軸と順序をあらかじめ決めておく必要がある
 - ・方位角(y軸周りの回転) → 仰角(x軸周りの回転) → 回転角(z軸周りの回転) がよく使われる

回転行列からオイラー角への変換

- ・オイラー角表現での、回転軸の適用順序によって異なる
- ・前スライドの行列 (Θο~Θ2の式)の、回転行列の各要素(3×3)の連立方程式より計算
- ・そのままでは複数の解が存在してしまうので、 回転角度の範囲に関する仮定を置く必要がある
 - 例: 仰角は -90度~90度の範囲 など

回転行列からオイラー角への変換

- ・例: 方位角 → 仰角→ 回転角 の場合
 - 仰角は -90度~90度の範囲と仮定
 - Z軸の x座標・z座標から、方位角を計算

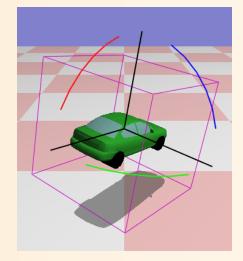
$$\theta_{\text{yaw}} = \tan^{-1} \frac{\mathbf{Z}_x}{\mathbf{Z}_z}$$
 or $\tan^{-1} \frac{\mathbf{Z}_x}{\mathbf{Z}_z} + \pi (\mathbf{Z}_x < 0)$

- Z軸の y座標・xz座標から、仰角

$$\theta_{\text{pitch}} = \tan^{-1} \frac{\cos \theta_{\text{yaw}} \mathbf{Z}_{y}}{\mathbf{Z}_{z}} \left(or \tan^{-1} \frac{\mathbf{Z}_{y}}{\sqrt{\mathbf{Z}_{x} \cdot \mathbf{Z}_{x} + \mathbf{Z}_{z} \cdot \mathbf{Z}_{z}}} \right)$$

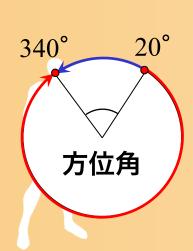
- Y軸の回転から、回転角を計算

$$\theta_{\text{roll}} = \tan^{-1} \frac{\cos \theta_{\text{pitch}} \left(\sin \theta_{\text{yaw}} \mathbf{Y}_z - \cos \theta_{\text{yaw}} \mathbf{Y}_x \right)}{\mathbf{Y}_v}$$



オイラー角の補間

- · 各回転角度 (Θο~Θ2) を独立に補間
 - 位置の補間方法と同じ方法がそのまま適用可能
 - 方位角の補間には、注意が必要
 - ・仰角は -90~90度の間、回転角は -180~180度 の間で変化すると仮定できる(これらの範囲を超えない)
 - ・方位角は、0~360度(or -180~180度など)の間で変化するが、範囲の境界は連続している
 - 例:20度→340度に変化するときには、+320度ではなく、 -40度の方向に変化するべき
 - **2つの向きの差が 180度以下**になるように変換してから補間
 - 例:20度→380度に変換してから、380度と340度の間を補間



オイラー角の補間の問題

- ・2つの方向の間が真っすぐに補間されない
 - オイラー角による表現では、前の回転軸周りの回転 により、次の回転軸が回転して影響を受けるため
 - ・四元数による表現を使うことで、問題を解決できる

プログラム例(1)

・オイラー角による向きの補間の処理の流れ

```
// 区間の両端点の向きを取得
const Matrix3f & o0 = keyframes[ seg_no ].ori;
const Matrix3f & o1 = keyframes[ seg_no + 1 ].ori;

// オイラー角表現に変換
float y0, p0, r0;
float y1, p1, r1;
ConvMatToEuler( o0, y0, p0, r0 );
ConvMatToEuler( o1, y1, p1, r1 );

回転行列からオイラー角表現への変換
前のスライドの計算を実装した関数
...
```

```
// 回転行列からオイラー角への変換 (yaw → pitch → roll の順の場合)
void ConvMatToEuler(const Matrix3f & m, float & yaw, float & pitch, float & roll)
{
...
```

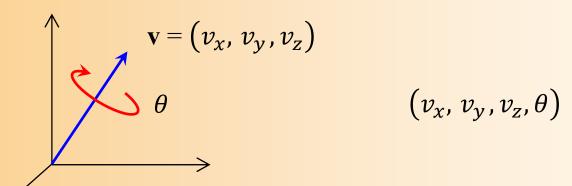
プログラム例(2)

・オイラー角による向きの補間の処理の流れ

```
// 各回転角度を線形補間
float y, p, r;
                                 方位角の差が-180~180度になる
if (y0 < y1 - M_PI) ___
                                           ように変換
  v0 += 2.0f * M PI;
                                      前のスライドの式を記述
                                   (単位はラジアン、M PI は \pi )
else if (y0 > y1 + M_PI)
  y0 -= 2.0f * M_PI;
y = (y1 - y0) * t + y0;
                                    線形に補間
p = (p1 - p0) * t + p0;
r = (r1 - r0) * t + r0;
// 行列表現に変換して出力
```

回転軸と回転角度による表現

・回転軸と回転角度による向きの表現



- 任意の回転軸を用いることで、一つの回転のみで、 どのような向きも表現できる
- 回転軸は長さ 1 の単位ベクトルとする

$$|\mathbf{v}| = 1$$

四元数による表現

・単位四元数

- 回転軸と回転角度による表現から変換

$$(v_x, v_y, v_z, \theta)$$

$$(x, y, z, w) = \left(v_x \sin\frac{\theta}{2}, v_y \sin\frac{\theta}{2}, v_z \sin\frac{\theta}{2}, \cos\frac{\theta}{2}\right)$$

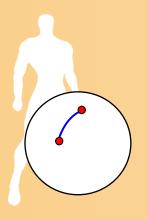
- ・単位四元数を使うメリット
 - 球面線形補間という、2つの向きの間を最短距離で 補間する計算方法が使えるようになる

四元数

- 四元数(Quaternion、クオータニオン)
 - 数学的には虚数を4次元に拡張したような概念

$$\mathbf{q} = (x, y, z, w) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} + w = ((x, y, z), w)$$

- 和、差、スカラ倍、共役 などの各種演算が定義できる
- 向きを表す四元数は、単位四元数となる
 - ・長さが1
 - ・4次元空間での半径1の球面上の点として表せる → 球面 上の最短経路上の点がら向き補間を計算できる

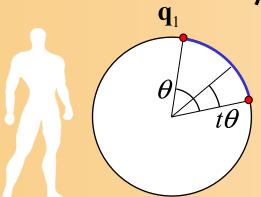


単位四元数の補間

- 球面線形補間 (SLERP: Sherical Lenear Interpolation)
 - 四元数により表された2つの向きを補間

$$\mathbf{q} = \frac{\sin(1-t)\theta}{\sin\theta} \mathbf{q}_0 + \frac{\sin t\theta}{\sin\theta} \mathbf{q}_1$$

ただし、

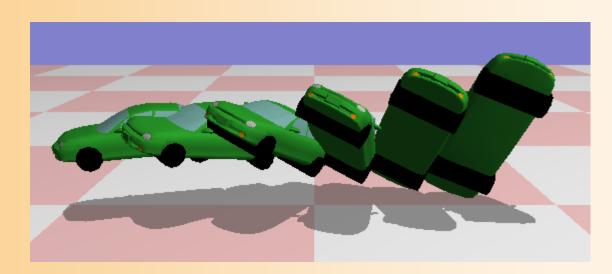


$$\theta = \angle \mathbf{q}_0 \mathbf{q}_1 = \cos^{-1} (\mathbf{q}_0 \cdot \mathbf{q}_1) = \cos^{-1} (x_0 x_1 + y_0 y_1 + z_0 z_1 + \theta_0 \theta_1)$$

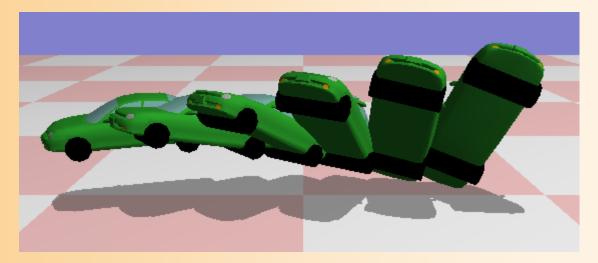
 \mathbf{q}_0

オイラー角による補間との比較

オイラー角



四元数



四元数と回転行列の間の変換(1)

- ・単位四元数から回転行列への変換
 - 任意ベクトル周りの回転行列に相当

If the scalar part has value w, and the vector part values x, y, and z, the corresponding matrix can be worked out to be

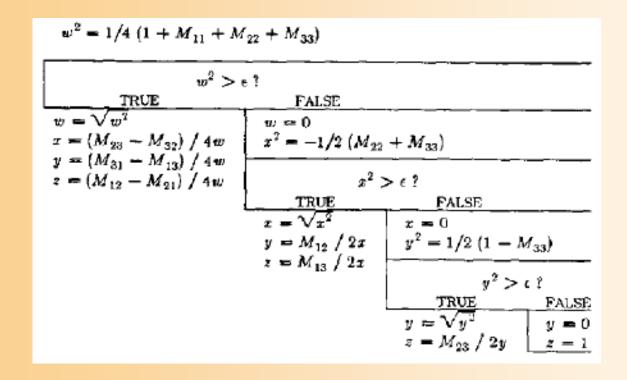
$$M = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$

when the magnitude $w^2+x^2+y^2+z^2$ equals 1. The

Ken Shoemake, "Animating Rotation with Quaternion Curves", Proc. of SIGGRAPH '85, pp. 245-254, 1985. より

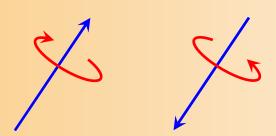
四元数と回転行列の間の変換(2)

- ・回転行列から単位四元数への変換
 - 回転行列の対角成分が回転角度を表す
 - ゼロ割を防ぐための特例を追加する必要がある

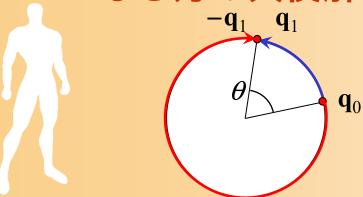


単位四元数の補間の注意

- ・1つの向きの表現方法は2通りある
 - (x, y, z, w) と (-x, -y, -z, -w) は共役解



・向きの間を補間する際は、通常、角度が小さく なる方の共役解を使用する



プログラム例

・四元数による向きの補間の処理の流れ

// 計算後の四元数を行列表現に変換

```
// 区間の両端点の向きを取得
const Matrix3f & o0 = keyframes[ seg_no ].ori;
const Matrix3f & o1 = keyframes[ seg_no + 1 ].ori;
// 行列による向きの表現を四元数による表現に変換
Quat4f q, q0, q1;
q0.set( o0 ); q1.set( o1 );
// 2つの四元数の間の角度が90度以上あれば、共役の四元数を使用
if (q0.x * q1.x + q0.y * q1.y + q0.z * q1.z + q0.w * q1.w < 0)
  q1.negate(q1);
                                 球面線形補間(前のスライドの式)を自
// 球面線形補間を計算
                                 分で計算 or
                                 vecmath の Quat4 クラスの
                                 interpolateメンバ関数を使って計算
```

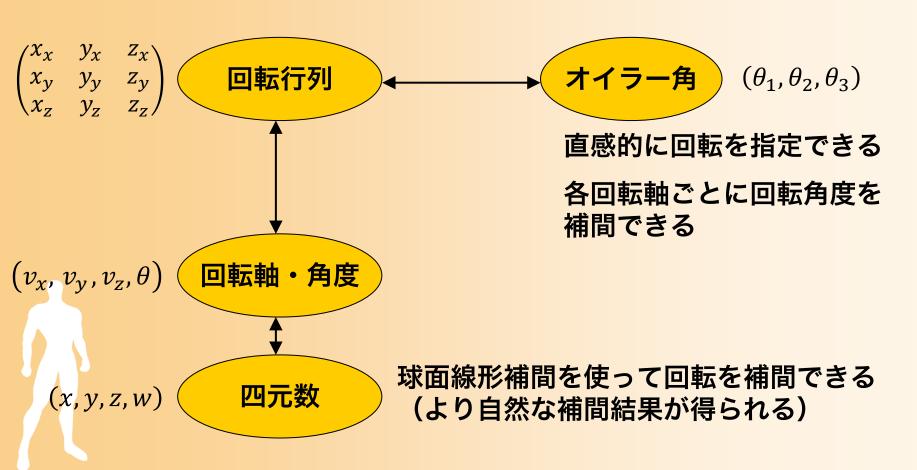
向きの表現方法のまとめ

・向きの表現方法

- 回転行列による表現 (3×3行列) (x_z y_y z_y z_z)
 - ・基本的な表現方法(OpenGL等に向きの情報を渡すときに は、回転行列で表現する必要がある)
 - ・余計なデータが多い、補間は難しい
- オイラー角による表現 $(\theta_1, \theta_2, \theta_3)$
 - ・各回転軸ごとに回転角度を補間できる
- 回転軸と回転角度による表現 (v_x, v_y, v_z, θ)
- 四元数による表現 (x, y, z, w)
 - ・球面線形補間を使って向きを全体的に補間できる

向きの表現方法と相互変換

・回転行列による表現方法が基本

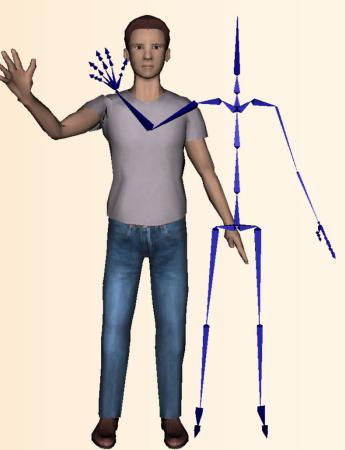


向きの表現方法の決定

- 自分のプログラムでどのような表現方法を用いるか?
 - とちらにしても、描画のため、最後は回転行列の形に する必要がある
 - 方法1:オイラー角または四元数として扱い、最後だけ回転行列に変換
 - 方法2:回転行列として扱い、必要に応じて四元数や オイラー角に変換
 - 視点操作の回の、変換行列を使う方法とパラメタ表現 (オイラー角)を使う方法の使い分けと同じ

キャラクタ・アニメーション

- ・人体を多関節体として扱い、各関節の回転に よって姿勢を表現する
 - 関節の回転の表現方法
 - 昔はオイラー角が一般的に 使われていた
 - キーフレームアニメーションを 行ったときに関節の回転が 不自然になる
 - 最近は回転行列・四元数による 表現が一般的に使われている
 - 基準部位 (腰) の位置も必要
 - 詳細は、後日の講義で説明

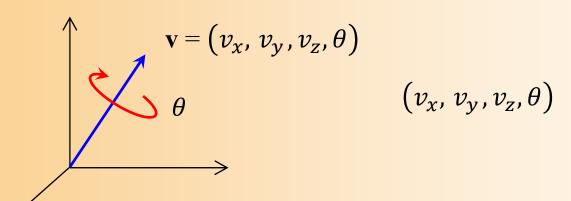


補足:複数の回転の補間

- ・用途によっては、3つ以上の向き・回転を補間 する必要がある
 - 動作補間により、複数の動作データを混合して新しい動作を生成する場合など
- ・四元数を使った球面線形補間では、2つの向き・回転の補間しかできない
- ・対数ベクトル表現を使うことで複数の向き・回 転の補間が可能

対数ベクトル表現

・回転軸と回転角度による向きの表現



・単位四元数

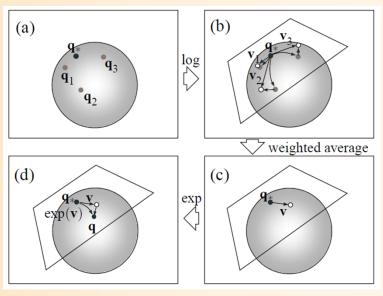
$$\left(v_x \sin\frac{\theta}{2}, v_y \sin\frac{\theta}{2}, v_z \sin\frac{\theta}{2}, \cos\frac{\theta}{2}\right)$$

対数ベクトル

$$\left(v_x\frac{\theta}{2},v_y\frac{\theta}{2},v_z\frac{\theta}{2}\right)$$

対数ベクトル表現による補間

- ・四元数を対数ベクトル表現に変換
- 対数ベクトルの線形補間により、複数の回転を 補間できる
 - 単純に補間すると誤差 が大きくなる
 - 平均回転 q* を求めて、 それと各回転の差分 を表すベクトルを補間



Sang Il Park, Hyun Joon Shin, Sung Yong Shin, "On-line locomotion generation based on motion blending", ACM SIGGRAPH Symposium on Computer Animation 2002, pp. 105-111, 2002.

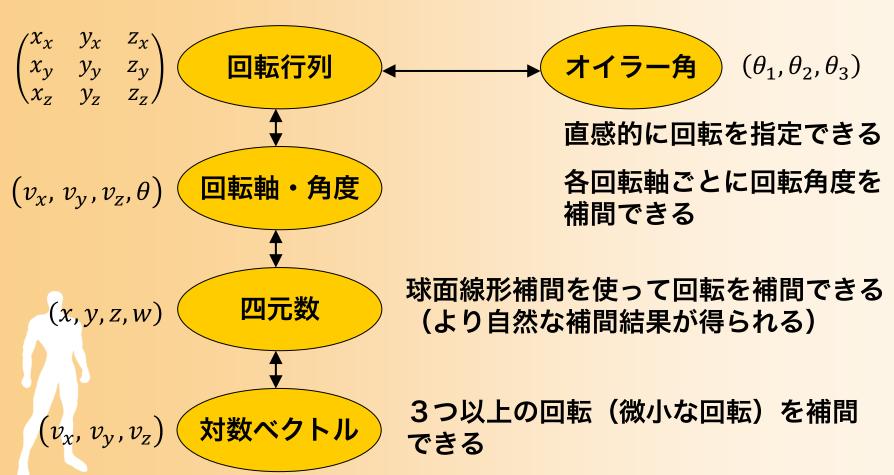
向きの表現方法のまとめ

・向きの表現方法

- 回転行列による表現 (3×3行列) (x_z y_y z_y z_z)
 - 基本的な表現方法(OpenGL等に向きの情報を渡すときに は、回転行列で表現する必要がある)
 - ・余計なデータが多い、補間は難しい
- オイラー角による表現 $(\theta_1, \theta_2, \theta_3)$
 - ・各回転軸ごとに回転角度を補間できる
- 回転軸と回転角度による表現 (v_x, v_y, v_z, θ)
- 四元数による表現 (x, y, z, w)
 - ・球面線形補間を使って向きを全体的に補間できる
- **対数ベクトルによる表現** (x, y, z)
 - ・3つ以上の回転の補間(微小な回転の補間)

向きの表現方法と相互変換

・回転行列による表現方法が基本



今日の内容

- ・向きの補間
 - 向きの表現方法と相互変換
 - オイラー角の線形補間
 - 四元数の球面線形補間
- ・アニメーションプログラミング
- ・レポート課題

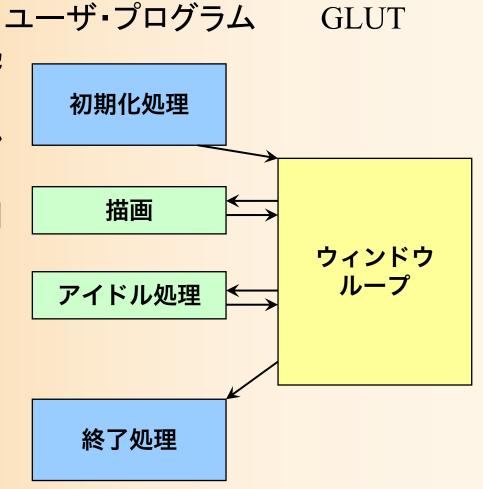
ーションプログラミング

アニメーションプログラミング

- アニメーション速度を一定に保つための工夫
 - アニメーション処理(アイドル処理)が一定周期で 実行される保証はない
 - アイドル処理が呼ばれる毎に一定時間アニメーションを進めるような単純なプログラムでは、コンピュータの性能や画面サイズなどにより、アニメーションの速度が大きく変わってしまう
 - 描画速度に合わせて、アニメーションの速度を自動 的に調節するような工夫が必要

GLUTのイベントモデル (復習)

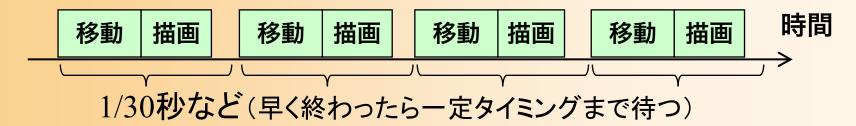
- ・イベントドリブン
 - 描画処理やアイドル処 理を設定しておくこと で、必要なときにそれ らが呼ばれる
 - アイドル処理は、定期 的に呼ばれる
 - アニメーション処理を ここに記述
 - ・どれくらいの頻度で呼 ばれるかは不明



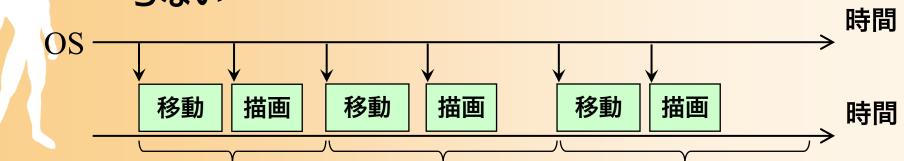
GLUT

アニメーションの処理

- ・非マルチプロセス環境(ゲーム専用機など)
 - 常に一定のタイミングで処理ができる



- ・マルチプロセス環境 (Windows, Java など)
 - とのようなタイミング・頻度で処理が呼ばれるか分からない



再生速度の問題

- 1度のアニメーション処理の度に一定量移動を 行う、というプログラムになっていると・・・
 - アニメーション処理が呼び出される頻度によって、移動速度が異なってしまう

実行回数が多いので、結果的に沢山移動

移動 描画 移動 描画 移動 描画 時間

実行回数が少ないので、結果的に少しだけ移動

移動描画移動描画

時間

再生速度を一定にする工夫

- ・アイドル関数(移動処理)での移動量を調整
 - 現在の時刻を取得 → curr_time
 - 前回呼ばれたときとの時間の差を計算 delta = curr_time - last_time;
 - delta の大きさに合わせて、物体を動かす
 - 今回の時刻を記録 last_time = curr_time;
 - last_time は、静的である必要がある

時刻の取得

·C標準関数

- time関数 砂単位の精度でしか取得できない
- clock関数 CPU時間(クロック数)を取得
 - CLOCKS PER SEC で割ることで時間を計算

· Windows API 関数

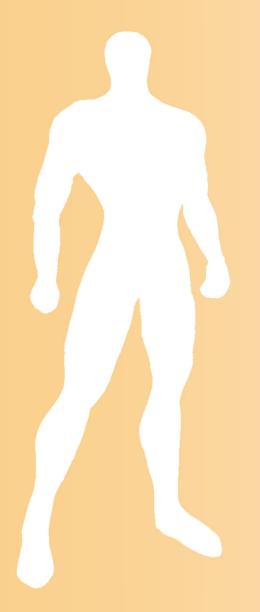
- timeGetTime関数 OS起動時からの経過時間を取得
 - ・C標準関数よりも高い精度
 - 古い Windows では精度が悪い(10ミリ秒程度)ので、 timeBeginPeriod関数 で調整
- QueryPerformanceCounter関数 CPUのクロックカウンタにもとづいた高精度な経過時間を取得可能

プログラム例

サンプルプログラムでのアニメーション処理

```
// アニメーションの再生時間
float animation time = 0.0f;
// アイドル時に呼ばれるコールバック関数
void IdleCallback( void )
  // システム時間を取得し、前回からの経過時間に応じてΔtを決定
 static DWORD last_time = 0; —
                                        前回の処理時刻を記録する静的
  DWORD curr time = timeGetTime();
                                              変数を定義
 float delta = (curr_time - last_time * 0.001f;
 if ( delta > 0.1f )
                                         システム時刻(今回の処理
   delta = 0.1f;
                                              時刻)を取得
  last time = curr time;
  animation time += delta;
                        時刻の差分から、アニメーションを進める時間を計算
```

一定値以上は大きくならないようにする



レポート課題

レポート課題

- ・位置・向き補間を実現するプログラムを作成
 - 1. Hermite曲線による位置補間
 - 2. Bézier曲線による位置補間
 - 3. B-Spline曲線による位置補間
 - 4. 四元数と球面線形補間による向き補間
 - サンプルプログラム(keyframe_sample.cpp)をもとに作成したプログラムを提出
 - 他の変更なしのソースファイルやデータは、提出する必要はない
 - Moodleの本講義のコースから提出
 - 締切: Moodleの提出ページを参照

レポート課題 提出方法

Moodleから、以下の2つのファイルを提出

- 作成したプログラム(テキスト形式)
 - keyframe_sample.cpp
- ・変更箇所のみを抜き出したレポート(PDF)
 - Moodle に公開している LaTeX のテンプレートを もとに、作成する
 - これまでのレポートと同様

レポート課題 演習問題

- ・レポート課題の提出に加えて、レポート課題の 理解度を確認するための Moodle 演習問題に も解答する
 - 解答締切は、レポート提出と同じ
 - レポート課題のヒントにもなっているので、レポート課題で分からない箇所があれば、演習問題の説明・選択肢を参考にして考えても良い
 - 締切後に解答が表示されるので確認する
 - ・レポート課題では、正しく動作するプログラムが提出されていれば、演習問題の正答の通りのプログラムが作成されていなくとも構わない

まとめ

- ・向きの補間
 - 向きの表現方法と相互変換
 - オイラー角の線形補間
 - 四元数の球面線形補間
- ・アニメーションプログラミング
- ・レポート課題

全体のまとめ

- キーフレームアニメーションの基礎
- ・サンプルプログラム
- 行列・ベクトルを扱うプログラミング
- ・位置補間
 - 線形補間、Hermite曲線、 Bézier曲線、B-Spline曲線
- ・向きの補間
 - 向きの表現と変換、オイラー角、四元数と球面線形補間
- ・アニメーションプログラミング
- ・レポート課題

次回予告

- 物理シミュレーション
 - 物理シミュレーションの種類
 - 剛体の物理シミュレーション
 - ・運動方程式
 - ・回転運動と慣性モーメント
 - ・シミュレーションの手順
 - 衝突と接触の扱い
 - 多関節体・変形する物体のシミュレーション